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DEFAUNATION

The impact of hunting on tropical
mammal and bird populations
A. Benítez-López,1* R. Alkemade,2,3 A. M. Schipper,2 D. J. Ingram,4 P. A. Verweij,5

J. A. J. Eikelboom,2,5,6 M. A. J. Huijbregts1,2

Hunting is a major driver of biodiversity loss, but a systematic large-scale estimate of hunting-

induced defaunation is lacking.We synthesized 176 studies to quantify hunting-induced

declines of mammal and bird populations across the tropics. Bird and mammal abundances

declined by 58% (25 to 76%) and by 83% (72 to 90%) in hunted compared with unhunted

areas. Bird and mammal populations were depleted within 7 and 40 kilometers from hunters’

access points (roads and settlements). Additionally, hunting pressure was higher in areas with

better accessibility to major towns where wild meat could be traded. Mammal population

densities were lower outside protected areas, particularly because of commercial hunting.

Strategies to sustainablymanagewildmeat hunting in both protected and unprotected tropical

ecosystems are urgently needed to avoid further defaunation.

G
lobal biodiversity loss is occurring at an

unprecedented rate (1). Few undisturbed

areas remain in the tropics (2), but these

are threatened by escalating road and in-

frastructure expansion, which promotes

human accessibility to otherwise remote areas

and facilitates illegal colonization and hunting

(3–5). Hunting exerts amajor pressure onwildlife,

which can result in large population declines and

local extirpations of wildlife populations in forests

that appear structurally undisturbed (6).Overhunted

“half-empty” or “empty ecosystems” are becom-

ing common across the tropics (7). Indeed, the

abundance of wildlife in natural ecosystems is

more closely related to patterns of hunting than

to factors such as forest type, habitat area, or

habitat protection status (8). A growing body of

research is focusing on defaunation and its far-

reaching cascading effects, including disrup-

tions in seed dispersal mutualisms and a decline

in total biomass (9, 10). However, hunting-induced

defaunation is a cryptic phenomenon that is dif-

ficult to monitor and, to date, no large-scale es-

timates of the impact of hunting on wildlife

abundances are available.

Here, we analyze the impact of hunting on

bird and mammal populations at a pantropical

scale, in terms of both magnitude (decline in

abundance) and spatial extent (depletion dis-

tances). We collated 176 studies, including 384

and 1938 effect sizes for 97 bird and 254mammal

species, respectively (11) (Fig. 1), and estimated

the overall reduction in mammal and bird abun-

dance in hunted compared with unhunted sites

with a mixed effects meta-analysis. As an effect

size, we calculated response ratios (RR) between

the abundance of each species in hunted (Xh)

and unhunted sites (Xc) within each study [RR =

log(Xh/Xc); (12)].RR are therefore negative (RR< 0)

or positive (RR > 0) if abundance estimates are

lower or higher, respectively, because of hunting

pressure. Based on the central-place foraging hy-

pothesis, hunting intensity is generally higher

in the proximity of hunters’ access points (e.g.,

settlements and roads) (5, 10), generating gradients

of increasing species densities up to a distance

where no effect is observed (i.e., species deple-

tion distances). We used single meta-regression

models to estimate species-depletion distances and

to quantify how the impact of hunting varied de-

pending on accessibility to urbanmarkets for trade

[travel time to major towns (13)], region, type of

hunting (commercial versus subsistence versus
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both), protection status (protected versus unpro-

tected area), species body size, and feeding guild.

Finally, we tested the relative importance of

these moderators using an information-theoretic

approachof severalmultiplemeta-regressionmodels

including first- and second-order interactions.

Overall, bird and mammal abundances were

reduced by 58% [95% confidence interval (CI):

25, 76%] and 83% (95%CI: 72, 90%), respectively,

in hunted areas (Fig. 2). Hunting pressure had a

larger effect onmammals than on birds, probably

because hunters preferentially target larger spe-

cies (6). Results were robust to potential publica-

tion bias for mammals and to Geary diagnostic

tests and differences in study quality for both

groups (figs. S3 and S4). Hunting-induced abun-

dance reductions varied with distance to hunters’

access points (distance, hereafter), accessibility to

urban markets, protected area status and type of

hunting, with distance being the most important

moderator (Figs. 3 and 4 and table S5). For birds,

effect sizeswere the lowest in proximity to hunters’

access points (RRb = –3.17, 95% CI = –2.62, –3.71,

~95% loss at 500 m) and approximated 0 at a

distance of 7 km (Fig. 3A). For mammals, effect

sizes first decreased from –0.76 (–1.30, –0.23) to

–2.38 (–2.84, –1.78) within the first 700 m (~90%

loss), and then increased steadily up to 0 at ~40 km

from hunters’ access points (Fig. 3B). This initial

higher RR may reflect the replacement of large-

bodied mammals by smaller ones. Indeed, we

found evidence of size-differential mammal de-

faunation for frugivores, carnivores, herbivores,

and insectivores (tables S6 and S7). Smallermam-

mals were consistently more abundant at higher

hunting pressure than larger species (fig. S5), pro-

bably owing to release from predation pressure

and competition as a result of (near) extirpation

of medium- and large-sized mammals (14). Large-

bodied frugivores, herbivores, and insectivores—

including chimpanzees (Pan troglodytes), West-

ern gorillas (Gorilla gorilla), and giant armadillos

(Priodontes maximus)—are largely hunted for wild

meat consumption and trade (15). In turn, large

carnivores, such as leopards (Panthera pardus)

and jaguars (Panthera onca), are often persecuted

because of livestock-wildlife conflicts, or their pop-

ulations are reduced because of hunting-induced

losses of prey species (16).

Bird andmammal population abundanceswere

lower in hunted areas with higher accessibility to

urban markets (Fig. 3, C and D). Effect sizes ap-

proached 0within 1 to 2 days of travel time from

the nearestmajor town. Formammals, this effect

remained after controlling for other factors (table

S6). Across the tropics, the majority of consumed

and traded wild meat and body parts comes from

mammals, whereas birds are generally killed for a

hunter’s own consumption (6, 17). However, for

both species groups, the transition fromsubsistence

to commercial hunting is having amassive impact

on population densities (Fig. 4). Current prospects

of infrastructure expansion in the Amazon, Africa,

and Asia will facilitate accessibility to remote areas

(3, 18, 19), boosting wild meat harvest and trade

to meet urban demands (7) and, thus, increasing

pressure on wildlife populations.

Mammal population densities were higher in-

side than outside protected areas (Fig. 4). However,

hunting pressure reducedmammal abundances

evenwithin protected areas (Fig. 4). Overhunting

within protected areas is ubiquitous across the

Amazon, Africa, and Asia (8, 20). Although our re-

sults suggest that the effects within are less detri-

mental than outside reserves, gazettement of

protected areas seems insufficient to safeguard

wildlife populations if not accompanied with im-

proved reservemanagement, effective lawenforce-

ment, and on-ground protection efforts (20).

Effect sizes were similar across regions for both

taxa, although slightly lower in South America for

birds (Fig. 4). This indicates that overhunting is

affectingmammal and bird populations similarly

across the tropics.However,we foundmore studies

in South America and Africa than Asia or Central

America (Fig. 1), which implies that our findings

aremore generalizable for the former two regions.

It also points out anurgent need to focus research

efforts in less-studied areas before wildlife pop-

ulations are completely extirpated. Unfortunately,

overhunting has already emptied most Asian
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Fig. 1. Geographical location of the 176 studies included in themeta-analysis. Locations as red dots. Countries that contain at least one study are in green

color. Red dots may represent multiple effect sizes.

Fig. 2. Forest plots of 384 and 1938 effect size

estimates for birds and mammals, respectively.

(A) Birds and (B) mammals. RR, response ratios

(effect sizes), black dots with 95%confidence inter-

vals (CI) as gray lines.Overall weightedmean effect

size estimate, black dashed line and red diamond.

95%CI of weightedmean effect size, red line. RR =

0, dashed gray line. Extremely negative effect sizes

indicate local extirpations.
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forests (7), leaving few unhunted control areas

left for pairwise comparisons.

The most important terms retained in our

multiplemeta-regressionmodelswere distance for

both groups (tables S6 and S7) and the interactions

betweenguild, body size, anddistance formammals

(see fig. S5 and explanations above).Our bestmodels

were significant according to omnibus tests (birds:

QM= 3157.5,P<0.001,McFaddenpseudo-R
2
: 0.29;

mammals: QM = 19207.3, P < 0.001, McFadden

pseudo-R
2
: 0.18); however, residual heterogeneity

was large (table S7), indicating that hunting is a

multifacetedphenomenon influencedby additional

factors, some of which were not included in our

models (e.g., food security). Additionally, con-

founding variables such as small-scale habitat

clearing and road disturbance are correlated with

distance to settlements and roads (21). However,

we minimized their influence as much as possible

by avoiding pairwise comparisons where distur-

bances other than hunting were apparent.

Overexploitation is a long-established major

driver of wildlife population declines and extinc-

tions in terrestrial ecosystemswhich, to date, has

not been successfullymitigated and rather shows

an increasing trajectory in recent decades (22).

Pleistocene extinctions were triggered in part by

human hunters (23), and ongoing wildlife pop-

ulation declines and (near) extinctions of large-

bodied species seem to share similar pathways.

Consequently, defaunation is rendering tropical

forests, savannahs, and grasslands “empty” (16),

with populations so sparse that the strength of

species interactions is declining dramatically. The

subtle nature of this processmakes it undetectable

by remote-sensing techniques, which are key to

monitor deforestation but prove futile to track on-

ground changes in biodiversity and ecological

functioning (24). Matching the findings of many

regionally specific studies (5, 10), ourmeta-analysis

shows that large vertebrates of various functional

groups are depleted in the vicinity of settlements

and roads. Our estimated hunting-depletion dis-

tances canbe used to assess ecosystemdegradation

as a result of current and future roaddevelopments

and settlement establishment. Recently, Peres et al.

(25) estimated that 32.4% of the remaining forest

across the Brazilian Amazon (~1 million km
2
) is

affected by hunting on the basis of hunting dis-

tances of 6 km from settlements. Our results,

however, indicate that the Amazon forest area

affected by hunting-induced defaunation might

be much larger. By 2050, with millions of kilo-

meters of roads planned in developing countries

(26), and human population and associated de-

mand for wildmeat increasing steadily, it is likely

that the term “remoteness” will be a ghost of the

past, with the last remnant half-depletedmammal

and bird populations persisting in few protected

areas. This can be ameliorated if we undertake co-

ordinated strategies to expand the current network

of protected areas, limit human encroachment

around them,monitor hunting activities, and con-

trol overexploitation via law enforcement, if needed,

while implementing alternative livelihood pro-

grams for wild meat–dependent communities.
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Semantics derived automatically
from language corpora contain
human-like biases
Aylin Caliskan,1* Joanna J. Bryson,1,2* Arvind Narayanan1*

Machine learning is a means to derive artificial intelligence by discovering patterns in

existing data. Here, we show that applying machine learning to ordinary human language

results in human-like semantic biases. We replicated a spectrum of known biases, as

measured by the Implicit Association Test, using a widely used, purely statistical

machine-learning model trained on a standard corpus of text from the World Wide Web.

Our results indicate that text corpora contain recoverable and accurate imprints of our

historic biases, whether morally neutral as toward insects or flowers, problematic as

toward race or gender, or even simply veridical, reflecting the status quo distribution of

gender with respect to careers or first names. Our methods hold promise for identifying

and addressing sources of bias in culture, including technology.

W
e show that standard machine learning

can acquire stereotyped biases from tex-

tual data that reflect everyday human cul-

ture. The general idea that text corpora

capture semantics, including cultural

stereotypes and empirical associations, has long

been known in corpus linguistics (1, 2), but our

findings add to this knowledge in three ways.

First, we used word embeddings (3), a powerful

tool to extract associations captured in text cor-

pora; this method substantially amplifies the sig-

nal found in raw statistics. Second, our replication

of documented human biases may yield tools and

insights for studying prejudicial attitudes and

behavior in humans. Third, since we performed

our experiments on off-the-shelf machine learn-

ing components [primarily the Global Vectors for

WordRepresentation (GloVe)word embedding],we

show that cultural stereotypes propagate to artificial

intelligence (AI) technologies in widespread use.

Before presenting our results, we discuss key

terms and describe the tools we use. Terminology

varies by discipline; these definitions are intended

for clarity of the present article. In AI and ma-

chine learning, bias refers generally to prior infor-

mation, a necessary prerequisite for intelligent

action (4). Yet bias can be problematic where such

information is derived from aspects of human

culture known to lead to harmful behavior. Here,

we will call such biases “stereotyped” and actions

taken on their basis “prejudiced.”

We used the Implicit Association Test (IAT) as

our primary source of documented human biases

(5). The IAT demonstrates enormous differences in

response times when subjects are asked to pair

two concepts they find similar, in contrast to two

concepts they find different. We developed our

first method, the Word-Embedding Association

Test (WEAT), a statistical test analogous to the

IAT, and applied it to a widely used semantic rep-

resentationofwords inAI, termedwordembeddings.

Wordembeddings represent eachword as a vector

in a vector space of about 300 dimensions, based

on the textual context in which the word is found.

We used the distance between a pair of vectors

(more precisely, their cosine similarity score, a

measure of correlation) as analogous to reaction

time in the IAT. The WEAT compares these vec-

tors for the same set of words used by the IAT.We

describe the WEAT in more detail below.

Most closely related to this paper is concurrent

work by Bolukbasi et al. (6), who propose ameth-

od to “debias” word embeddings. Our work is

complementary, as we focus instead on rigorously

demonstrating human-like biases inword embed-

dings. Further, our methods do not require an al-

gebraic formulation of bias, which may not be

possible for all types of bias.Additionally,we studied

the relationship between stereotyped associations

andempirical data concerning contemporary society.

Using the measure of semantic association de-

scribed above, we have been able to replicate every

stereotype that we tested. We selected IATs that

studied general societal attitudes, rather than those

of subpopulations, and for which lists of target and

attribute words (rather than images) were avail-

able. The results are summarized in Table 1.

Greenwald et al. introduced and validated the

IAT by studying biases that they consider nearly

universal in humans and about which there is no

social concern (5). We began by replicating these

inoffensive results for the same purposes. Spe-

cifically, they demonstrated that flowers are sig-

nificantly more pleasant than insects, based on

the reaction latencies of four pairings (flowers +

pleasant, insects +unpleasant, flowers+unpleasant,

and insects + pleasant). Greenwald et al. measured

effect size in terms of Cohen’s d, which is the

difference between twomeans of log-transformed

latencies in milliseconds, divided by the standard

deviation. Conventional small, medium, and large

values of d are 0.2, 0.5, and 0.8, respectively. With

32 participants, the IAT comparing flowers and

insects resulted in an effect size of 1.35 (P < 10
−8
).

Applying our method, we observed the same

expected association with an effect size of 1.50

(P< 10
−7
). Similarly, we replicatedGreenwald et al.’s

finding (5) that musical instruments are signifi-

cantly more pleasant than weapons (see Table 1).

Notice that the word embeddings “know” these

properties of flowers, insects, musical instruments,

and weapons with no direct experience of the

world and no representation of semantics other

than the implicit metrics of words’ co-occurrence

statistics with other nearby words.

We then used the same technique to demon-

strate thatmachine learning absorbs stereotyped

biases as easily as any other. Greenwald et al. (5)

found extreme effects of race as indicated simply

by name. A bundle of names associated with being

European American was found to be significantly

more easily associated with pleasant than unpleas-

ant terms, compared with a bundle of African-

American names.

In replicating this result, we were forced to

slightly alter the stimuli because some of the

original African-American names did not occur
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